"ENERGY POLICY IN CYPRUS"

by Professor Constantinos Christofides

or build

11th of July 2011

- "Evangelos Florakis" Naval Base Explosion [Dead: 13, Wounded: 65]
- Vasilikos Power Plant (VPP) extensively damaged and non-operational
- Loss of 793MW from country's installed power capacity, about 53% of total power (1,646MW). Deficit of 400MW in relation to expected maximum summer demand

Power Production System (Pre July 11th 2011 events)

UNIVERSITY OF CYPRUS

Photos of Vasilikos Power Station

Building Roof of Units 1, 2 and 3

(Shot taken from height of approx. 50m)

		Production System Losses		
#	Power Plant	Capacity(MW)	Nominal Installed Capacity (MW)	Available Capacity Production (MW)
1	Vasilikos Power Plan	3 x 130 MW Steam Turbines 390 MW	793MW	OMW
		1 x 38 MW Gas Turbines 38 MW	Non operational	53% of total power production capacity non operational
		1x 220MW Combined Cycle Unit (CCGT) 1x145MW Combined Cycle Unit (CCGT)		
2	Dekelia Power Plant	6 x 60 MW Steam Turbines 360 MW	460MW	460MW
		2x50MW ICE		
3	Moni Power Plant	6 x 30 MW Steam Turbines 180 MW 1 x 20 MW Steam Turbines 20MW	350MW	229MW
		4 x 37,5 MW Gas Turbines 150 MW		
4	Autoproducers		26MW	26MW
5	Independent producers from RES, (not considered as contributing to the production capacity)	82MW (Wind Farm)	82MW	~10MW
			1691MW	725MW

PRELIMINARY IMPACT EVALUATION-4:

PRELIMINARY IMPACT EVALUATION-4

Initial Repair Cost and Economic Impact (EU Experts)

Unit/Activity Parameter	Best Case Scenario €M	Base Scenario €M	Worst Case Scenario €M
Direct Losses (repair cost) VPP repair cost	330	400	700
Indirect Losses Income loss from VPP Increase in insurance premiums Operational Expenses	600 20 300	600 20 300	600 20 300
Total Losses	1250	1320	1620

ENERGY CRISIS MANAGEMENT-1 Production Profile: Day 1 (July 11th 2011)

UNIVERSITY OF CYPRUS

Priority corridors for electricity, natural gas and oil

UNIVERSITY OF CYPRUS

- **– –** Φυσικό αέριο
- – Ηλεκτρική ενέργεια.
- – Ηλεκτρική ενέργεια και φυσικό αέριο
- – Πετρέλαιο και φυσικό αέριο
 - 🔤 Ευφυή διασυνδεδεμένα δίκτυαηλεκτρ. ενέργειας στην ΕΕ

ENERGY CHALLENGES FOR CYPRUS

- Short term (current-2020)
 - Hydrocarbon extraction
 - Import and use of Natural Gas
 - Integrated planning of RES use
- Medium Term (2020-2030)
 - Transition to low carbon energy mix
- Long Term (2040-2050)
 - Transition to hydrogen economy

The lowest economic cost (to the Cypriot consumer) must be ensured.

Cyprus RES action plan

RES technologies considered:

- Wind (135 MW)
- PVs (9 MW)
- CSP with 6 hours thermal storage (x)
- Biomass (8 MW)
- Total RES 152 MW

Applications in the Framework of NER 300 Program

Solar Thermal Stations:

4 Applications (176,26 MW) και 1 EAC Application in the past (50 MW)

Total Solar Thermal: 5 Applications, 226, 26 MW

Solar Parks: 4 Applications, 90MW

Offshore Wind Farm: 1 Application, 54 MW

Potential

Solar irradiation in Cyprus is one of the highest in Europe - Proof of the enormous prospect and potential of this technology in Cyprus Urgent requirement towards more sustainable sources of energy.

AC Energy Yield Comparison: Stuttgart and Nicosia

Solar Thermal Electricity Power Production Plant in the area of Acrotiri Limassol – Description of Proposed Project

Total installed electric power: 50 MW

Thermal storage 7.5 hours

Estimated production energy output: **149 GWh/yr**

Parabolic mirrors: 624 (length 148,50 m and width 5,77 m)

Site Area: 3,300,000 m2

55% of which will be used for the proposed project **1,804,032 m2**

The Solar Thermal Station production will be channeled in the existing electricity grid with the construction of a closed type substation (GIS).

The new substation will be connected to the Colossi substation with an underground cable.

Cable routing through the existing road network.

Solar Thermal Station Description

The mirrors concentrate solar rays in conductors running lengthwise, containing special fluid that is heated at 400°C.

The special fluid is then transferred to the solar steam unit for steam production that is led to a steam turbine, which drives a generator to produce electricity.

The process is repeated as long as the sun is above the horizon with the use of the mirrors' special orientation mechanism, allowing the tracking of the sun until it sets.

Solar Thermal Station Description

UNIVERSITY OF CYPRUS

Solar Thermal Station Operation (night time – cloudy)

Location Choice

Criteria

<u>a) Technological</u> Energy Storage Cooling Water Ground Area Ground Inclination

<u>b) Natural Environment</u> Terrestrial Flora and Fauna Marine Flora and Fauna Soil Productivity Fisheries Aquatic Resources

<u>c) Developed Environment</u> Land Uses Cultural Heritage Public Health Landscape Aesthetics

Proposed Project Location

- Private plot owned by the Limassol Bishopric
- Acrotiri Peninsula
- Adjacent to Acrotiri
- South West of the Acrotiri salt lake
- British Sovereign Bases
- North of Military Airport
- West of Acrotiri Forest
- Adjacent in the West with the Cyprus Environmental Research & Education Center and the Monastery of St. Nicholas of the Cats

INPUT PARAMETERS (ΠΕΙΡΑΜΑΤΙΚΟ ΦΩΤΟΒΟΛΤΑΙΚΟ ΠΑΡΚΟ ΠΚ)

Computer Aided PV Calculations (Excel interface version)

Project description

UCY 10MW PV system

	Input	parameters	
Parameter	Unit	Value	Notes
Technical data			
Plant capacity	kW	10000	
Annual solar potential	kiAdhalam ²	1970	28 degrape fixed seals
PV frame area	270-06/	7.03	zo odgrees inten mildie
V efficiency	06	14.02	
osses	%	18.20	Incl orientation and inclination losses
Capital data			
specific capital cost	€/kW	1380.00	
Capital cost	e	13800000	
Plant life	vears	20	
equity	96	58	
tate of return on equity	96	0.1	
tate of return on borrowings before tax	%	6	
VACC	%	2.58	
Capital recovery factor	%	0.064620715	
Emissions data			
CO ₂ indicator	g/kWh	800	
O2 ETS price	€/t	0	
D&M data			
Staff	€/vear	20000	
Aaintenance	E/voar	69000	0.005 % of conital cost
Overheads	€/vear	0	erees hi or cethesi cost
pecific O&M cost	6/kW	8.9	
Other data			
Nility base tariff	€c/kWh	5 886	Connection at 122kV
ase fuel price	En	187.95	Bared on DEC color
ctual fuel price	ER	500.00	based on rice policy
uel adjusting index	Ec/kWh/SEc/t	0.00132	Connection at 122kU
tility purchase tariff	€/kWb	0 141241	Connection at 132KV
nnual income tax rate	96	10	

	OU	TPUT
Annual power generation	MWh	15882.65
Capacity factor	%	18.13
Annual CO ₂ avoided emissions	t	12706
Annual barrels of crude oil not consumed	bbl	26380
nual capital charge	€	-891766
Annual O&M charge	€	-89000
nnual CO2 trading income	€	0
innual electircity exported income	e	2243284
apital charge	€/kWh	0.056147
D&M charge	€/kWh	0.005604
fotal production cost	€/kWh	0.061751
O2 trading income	€/kWh	0.000000
Electircity exported income	€/kWh	0.141241
Production cost/benefit	€/kWh	0.079490

UNIVERSITY OF CYPRUS

University of Cyprus

Πανεπιστήμιο Κύπρου University of Cyprus

REFERENCES

- Cyprus Energy Regulatory Authority Mr. Georgios Shammas, President
- Electricity Authority of Cyprus Dr Andreas Poullikkas, Research and Development Assistant Manager
- UCY Department of Electrical and Computer Engineering Assistant Professor George Georgiou

